

Bulletin MSG11-5715-696/UK

Installation Manual Series PWD00*-400 Design ≥ 40

E-Module for Proportional Directional Control Valves

Parker Hannifin Manufacturing Germany GmbH & Co. KG Industrial Systems Division Europe Gutenbergstr. 38 41564 Kaarst, Germany E-mail: isde.kaarst.support@support.parker.com Copyright © 2022, Parker Hannifin Corp.

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DE-SCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

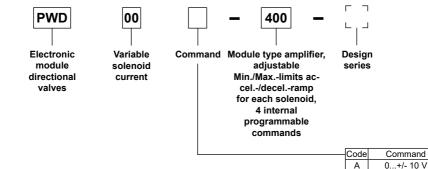
Installation Manual

E-Module for Proportional DC Valves Series PWD 00*-400

Parker electronic modules PWD00*-400 for rail mounting are compact, easy to install and provide time-saving wiring by disconnectable terminals. The digital design of the circuit results in good accuracy and optimal adaption for proportional directional control valves by a comfortable interface program.

Characteristics of the electronic control module

The described electronic unit combines all necessary functions for the optimal operation of proportional directional control valves without position sensor (series D*FB, D*FW, WLL, RLL). The most important features are:

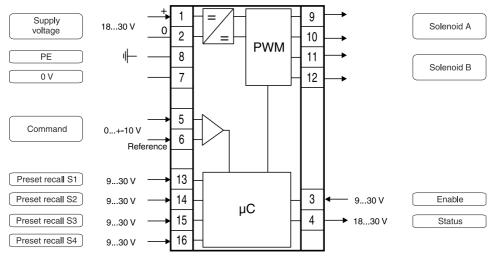

- · digital circuit design
- · four parameterizable preset recall channels
- · constant current control
- differential input stage
- · status output
- · four quadrant ramp function
- · enable input for solenoid driver
- · status indicator
- parametering by USB interface
- · connection by disconnectable terminals
- compatible to the relevant European EMC standards

CE

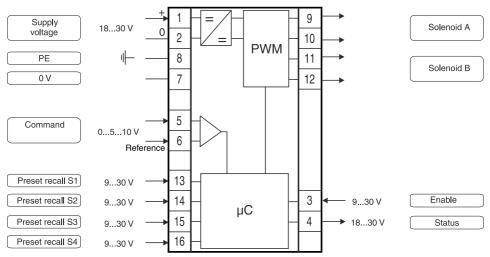
- comfortable interface program
- comfortable PC user software, free of charge: www.parker.com/isde - see "Support", or directly at www.parker.com/propxd.

Ordering Code

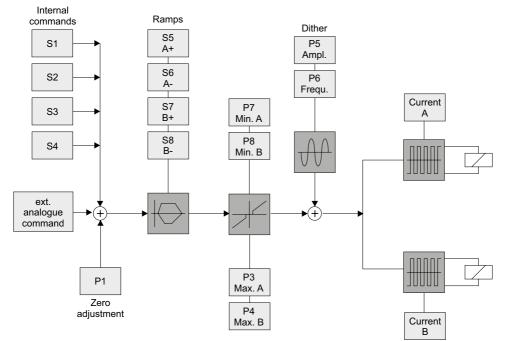
0000	Command		
Α	0+/- 10 V		
В	0510 V		


Technical data

General					
Model		Module package for snap-on mounting on EN 50022 rail			
Package material		Polycarbonate			
Inflammability class		V0 acc. UL 94			
Installation position		Any			
Ambient temperature range	[°C]	-20+60			
Protection class		IP20 acc. EN 60529			
Weight	[g]	160			
Electrical					
Duty ratio	[%]	100			
Supply voltage	[VDC]	1830, ripple < 5 % eff., surge free $^{1)}$			
Switch-on current typ.	[A]	22 for 0.2 mS			
Current consumption max.	[A]	2.2			
Pre-fusing	[A]	2.5 A medium lag			
Command signal Code A Code B [V]		+10010, ripple < 0.01 % eff., surge free, Ri = 150 kOhm 0510 V, ripple < 0.01 % eff., surge free, Ri = 150 kOhm			
Input signal resolution	[%]	0,025			
Differential input voltage max.	[V]	30 for terminals 5 und 6 against PE (terminal 8)			
Enable signal	[V]	04: Off / 930: On / Ri = 30 kOhm			
Channel recall signal	[V]	04: Off / 930: On / Ri = 30 kOhm			
Status signal	[V]	00.5: Off / Us: On / rated max. 15 mA			
Adjustment ranges Min Max Ramp Zero offset Current		50100 032500 +100100			
Interface		USB type B			
EMC		EN IEC 61000-6-2, EN IEC 61000-6-4			
Connection		Screw terminals 0.22.5 mm ² , disconnectable			
Cable specification	[AWG] [AWG]	11,5 0			
Cable length	[m]	50			


¹⁾ If solenoids with a nominal voltage of 24 V are connected, the supply voltage has to be raised to 29 V.

Circuit Diagram PWD 00A-400



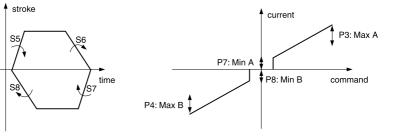
Circuit Diagram PWD 00B-400

Signal flow diagram

Commands

Additionally to the external analogue command input S4, which can be activated by the switching inputs (Pin 5 and 6), the PWD00*-400 electronic includes four internal programmable command values S1 to

(Pins 13, 14, 15, 16). S1 at pin 13 has the highest priority, S4 at pin 16 the lowest.


Ramp-function / Min-Max-function

The PWD00*-400 electronic modules includes four internal programable ramps. Acceleration and/or deceleration are adjustable for each solenoid separately.

Additionally a current step may be programmed for each solenoid (Min), and the current may be limited for each solenoid (Max).

The connected valve may not operated before loading an appropriate parameter set from the

PC into the module electronics.

Nominal current adjustment

The nominal current can be adjusted by one parameter separately for each solenoid (Pin 9, 10, and 11, 12). The default nominal current is 800mA.

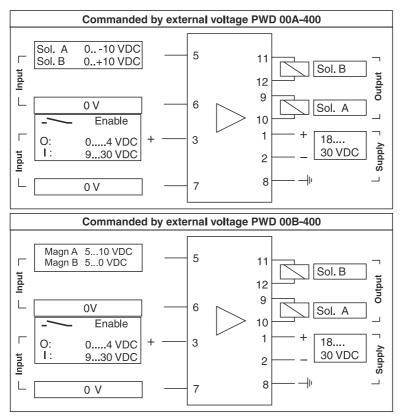
Parameterization

All parameters can be adjusted via USB connection by the computer-software.

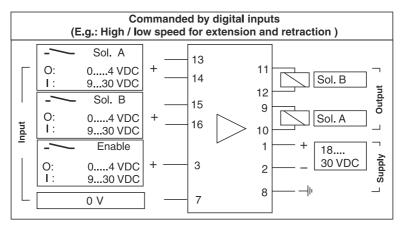
The computer-software shows the parameters in text-form. So they are easy to use.

Example of parameter chart

Parameter	Range	Default value	Unit	Function
P1	0.0±100.0	0.0	%	Zero point adjustment
P3	50.0100.0	100.0	%	Max. current A-solenoid
P4	50.0100.0	100.0	%	Max. current B-solenoid
P5	0.010.0	0.0	%	Dither amplitude
P6	0300	0	Hz	Dither frequency
P7	0.050.0	0.0	%	Min. current A-solenoid
P8	0.050.0	0.0	%	Min. current B-solenoid
S1	-100.0+100.0	0.0	%	Internal command 1
S2	-100.0+100.0	0.0	%	Internal command 2
S3	-100.0+100.0	0.0	%	Internal command 3
S4	-100.0+100.0	0.0	%	Internal command 4
S5	032500	0	ms	Acceleration A-solenoid
S6	032500	0	ms	Deceleration A-solenoid
S7	032500	0	ms	Acceleration B-solenoid
S8	032500	0	ms	Deceleration B-solenoid
IA	0, 1, 2, 3, 4	0	-	Nom. current A-solenoid, 0=0.8A; 1=3.5A; 2=2.7A; 3=1.8A; 4=1.3A
IB	0, 1, 2, 3, 4	0	-	Nom. current B-solenoid, 0=0.8A; 1=3.5A; 2=2.7A; 3=1.8A; 4=1.3A
E25	0, 1	0	-	Operating threshold MIN, 0=1%, 1=0.1%


All parameters are saved in an EEPROM and become active directly after supply voltage is switched on.

Standard Paramters


	Solenoid	Nominal	Current	Dither		
Valve		I _{max} A-side (IA)	I _{max} B-side (IB)	Amplitude (P5) [%]	Frequency (P6) [Hz]	
D1FW	K M L	1.8 A (3) 2.7 A (2) 3.5 A (1)	1.8 A (3) 2.7 A (2) 3.5 A (1)	2.0 2.0 2.0	100 100 100	
D1FB	М	2.7 A (2)	2.7 A (2)	2.0	100	
D3FW	K M	2.7 A (2) 3.5 A (1)	2.7 A (2) 3.5 A (1)	2.0 2.0	100 100	
D3FB	М	3.5 A (1)	3.5 A (1)	2.0	130	
RLL NG06	G09	2.7 A (2)	2.7 A (2)	2.0	130	
WLL NG06	G09	2.7 A (2)	2.7 A (2)	2.0	110	
WLL NG10	G10	3.5 A (1)	3.5 A (1)	2.0	130	
D*1FW	L	2.7 A (2)	2.7 A (2)	2.0	100	

Connection Examples

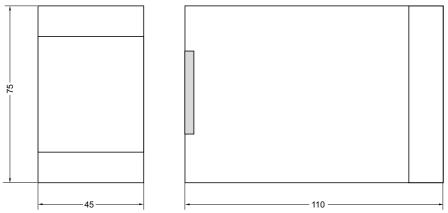
Connection Examples

Certainly modifications and / or combinations of these examples are possible. The priority of the digital inputs over the analogue input has to be kept in mind!

Pinning PWD 00A-400

Pin	Des	cription	Pin	Description		
1	+ supply	1830 VDC	9	solenoid A		
2	GND supply	0 VDC	10	solenoid A		
3	Enable input	930 VDC	11	solenoid B		
4	Status output	0 VDC / 1830 VDC	12	solenoid B		
5	Command +	± 10 VDC	13	int. command 1	0 VDC / 1830 VDC	
6	Command -	± 10 VDC	14	int. command 2	0 VDC / 1830 VDC	
7	GND dig. IO	0 VDC	15	int. command 3	0 VDC / 1830 VDC	
8	PE	Earth	16	int. command 4	0 VDC / 1830 VDC	

Pinning PWD 00B-400


Pin	Des	cription	Pin	Description		
1	+ supply	1830 VDC	9	solenoid A		
2	GND supply	0 VDC	10	solenoid A		
3	Enable input	930 VDC	11	solenoid B		
4	Status output	0 VDC / 1830 VDC	12	solenoid B		
5	Command +	0510 VDC	13	int. command 1	0 VDC / 1830 VDC	
6	Command -	0 VDC	14	int. command 2	0 VDC / 1830 VDC	
7	GND dig. IO	0 VDC	15	int. command 3	0 VDC / 1830 VDC	
8	PE	Earth	16	int. command 4	0 VDC / 1830 VDC	

Enable input and status output

The enable input activates (9...30 VDC) the power amplifiers or deactivates them (0 VDC). The status output delivers 18...30 VDC during normal operation. It switches to 0 VDC in case of an error.

Dimensions

Installation guide to electronic modules to provision of electromagnetic compatibility

Power Supply

The utilized power supply has to comply with the EMC-standards (CE-sign, certificate of conformity).

Relais and solenoids operating from the same supply circuit as the valve electronics have to be fitted by surge protection elements.

Wiring Cable

The wires between the installation site of the module and the peripheral units, as power supply, valve solenoids, position transducer, command signal source have to be shielded. The following wire sizes must be reached: power supply AWG 16, other connections AWG 20. The capacity should not exceed a value of approx. 130 pF/m (wire/wire). The maximum cable length is 50 m. No power current lines may be placed within the wired shielded cables to the electronic module. The cable shield has to be connected to ground at both ends (see also chapter "Grounding"). Please be aware of ground loops.

Installation

The module has to be mounted within a conductive, shielded enclosure. Usable is i.e. an EMC-approved control cabinet. A perfect grounding of the enclosure is mandatory (see also chapter "Grounding").

Grounding

The mounting plate of the valve has to be connected to the grounded metal machine frame. The cable shields must be tied to ground at the control cabinet. A low-ohmic potential compensation wire has to be provided between the control cabinet and the machine frame (cable wire >AWG 7 cross section) to prevent ground loops.

